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The possibility for detection of interstellar particles in, the Earth's environment is con-

sidered on the basis of the passage of the solar system through the interstellar medium.

Among the forces which inhibit interstellar particle penetration, the deflection by the

solar magnetic field and the repulsive force clue to the radiation from the Sun are by far

the most important.

IT IS ESTIMATED that the numberdensityVAalOVSLVofsmall particles in the solar system

at one AU is of the order of 10 -12 cm -_. If we use

an average interstellar extinction per unit dis-

tance in the solar neighborhood as 1 mag/kpc

we obtain an average number density for 0.1t_

radius interstellar particles of Nrp'_lO -I_ cm -3

which is the same order of magnitude.
While it is true that the interstellar particles are

generally smaller than the interplanetary particles,
nevertheless the small particle component of the

interplanetary space which contributes particu-

larly to the polarization of the zodiacal light is

suggestively similar in typical size (Giese and
Dziembowski, 1967, Aller et al., 1967). It is
therefore not unreasonable to exanaine further the

question of the interstellar component of the

interplanetary particle distribution (Greenberg,

1969, 1970). We must consider first the chance for
passage of the Sun through an interstellar cloud
and further we must consider the effects of repul-

sive forces exerted by the solar system on the

incoming interstellar particles.

PASSAGE OF THE SUN THROUGH AN

INTERSTELLAR CLOUD

The space between the stars appears to consist

mainly of cool neutral hydrogen clouds imbedded

in a hot neutral hydrogen medium of quite low

density. The cool clouds vary in size typically

between 1 pc and 10 pc in radius. We picture a

spherical shape for illustrative purposes only. The

larger clouds may have a hydrogen number density
of NH = 10 cm -_ and the smaller ones may have a

density of Nn= 10_ cm -_ or higher. Neither the
distribution of cloud size nor the appropriate

densities is firmly established. For our purposes
it will be useful to make some crude assumptions

to get order of magnitude estimations of the

probability that the Sun may be passing through
some cloud. It should be noted that with the

hydrogen densities chosen above the respective

particle densities in small and large clouds would
be thc order of 4000X1O -12 cm -3 and 40)<10 -_2

cm -_ which are larger than the number density of

small zodiacal light particles.

If all the clouds are of 10 pc radius, the number

density of such clouds would be 6X 103 kpc -3 and

if all are 1 pc radius clouds the number density

would be 6×104 kpc -_. Using random cloud

velocities of 10 km/sec (10 pc in one million

years) we see that the time of passage through the

large and small clouds are 10 _ and 105 years re-

spectively. Based on the cloud number densities

the time spent between the clouds is, for the

former, 5X 106 yrs. and, for the latter, 2.5X10 _

yrs. Th_ the fraction of time spent inside a cloud
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is bracketed between 1/_ and 1/_5. Neither of these
probabilities--certainly not the former--is suffi-

ciently small to exclude the chance that some of

the interplanetary particles are of interstellar
origin. It should be pointed out on the other hand

that there is apparently no convincing evidence

that we are now passing through a cloud.

DUST REPELLING MECHANISMS

Three obvious mechanisms for repelling the

interstellar dust from entering the solar system

are magnetic fields, the solar _nd and solar

radiation pressure. The first is applicable only if

the dust particles are charged. The effects of the

second are stronger if the dust particles are

charged but exists even when the grains are
uncharged.

Solar Wind

Let us estimate the distance over which an

interstellar grain will penetrate the solar system
under the assumption that it meets the solar wind

head-on. We assume that the solar wind consists

of 3 protons cm -s moving with a speed of 400 km

sec -_. The penetration distance d is obtained by

requiring that the total energy imparted to the
grain by the colliding protons equal the initial

grain kinetic energy. Wc may write this condition

approximately as I/_??geV2=TFIH_)H2TIH'gCI 2 d. Using
grain density s = 1 and radius a = 10-5 cm we find

that d--_50 AU if the speed of passage of the

solar system through the cloud is 10 km/sec. This

is so large insofar as the solar wind is concerned

that the interstellar grains should pass through
unaffected. In view of the fact that wc have

assumed a constant solar wind intensity through-

out the solar system in this simplified calculation,
we have greatly overestimated the solar wind

effect. Even taking into account the fact that a

charged grain would have a greater collision cross

section, the average rate of momentum transfer for

the distant collisions is not sufficient to change
our conclusions.

Magnetic Field

As an illustration we consider the effect on a

"typical sized" a = 0.1_ grain. Larger grains would

be less deflected than smaller grains so the

criticality derived is an upper limit insofar as
larger grains are concerned.

Rather than calculating the radius of curvature

of a typical entering grain we calculate its deflec-

tion. The calculation is simplified by assuming the

net effect will not be large. The final result will

indicate the consistency of this assumption.

Consider the worst possible case that the grain

enters normal to the magnetic field in the solar

system. The field will be represented by its trans-

verse component B o (Ness, 1968) having a field

strength of the order of 6 × 10-5 gauss at 1 AU.

The force on the grains is qVB and the accelera-

tion is a_.=qVBt/rn_ where B,=Bo(1 AU/R) and

B0 = 6 × 10-s gauss. The deflection may be cal-

culated simply by assuming a very large radius of
curvature. We get the lateral deflection as

t" $

A= Jo a_t dt

We let t=x/V where x is measured from some

outer point in the solar system. We shall choose

this outer point as R0 = 10 AU. Then:

qVBo(1AU)2 /"n° (Ro-R dRA=
moV _ I.Rt R

where R1 is chosen as the distance from the Sun

where the deflection is defined. If we let R_ = 1 AU

and let the charge on the grain be such as to give

it a one volt potential we get h_103 AU for

V=20 kin/s! This is enormous. It is only for

grains with potentials _<10 -s volts that the angle
of deflection becomes moderate. For a= !0 -s cm

this implies less than one electron charge. We note
that, for fixed potential, A--_a -_ so that inter-

stellar grains in the one micron size range might
sweep through.

Radiation Pressure

The criterion we use here is whether the net

repulsive force is such that an incoming g_ain at
10 km/sec turns around at 1 AU. We therefore

equate the initial kinetic and final potential energy
where the latter is defined in terms of an effective

repulsive gravitational constant _G. Thus e_

(_V2)/(GMo/R_). This gives _0.05, i.e., the

radiation force need be only slightly greater than
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the gravitational force. For a 6000 K blackbody

the radiation force on a 0.1_ dirty ice grain is

10 -1° dynes. The gravitational force is equiva-

lently 4.3X10 -1° dynes. Thus a 0.1u ice grain

should penetrate. It can be shown that somewhat

smaller grains _ill also penetrate. However it is

clear that the dominant factor in preventing the

penetration of dtLst particles from interstellar

space is the radiation of the Sun.
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